
FuzzInMem: Fuzzing Programs via In-memory Structures
Xuwei Liu

Purdue University
West Lafayette, United States

liu2598@purdue.edu

Wei You
Renmin University of China

Beijing, China
youwei@ruc.edu.cn

Yepeng Ye
Purdue University

West Lafayette, United States
ye203@purdue.edu

Zhuo Zhang
Purdue University

West Lafayette, United States
zhan3299@purdue.edu

Jianjun Huang∗
Renmin University of China

Beijing, China
hjj@ruc.edu.cn

Xiangyu Zhang
Purdue University

West Lafayette, United States
xyzhang@purdue.edu

ABSTRACT
In recent years, coverage-based greybox fuzzing has proven to be
an effective and practical technique for discovering software vul-
nerabilities. The availability of American Fuzzy Loop (AFL) has
facilitated numerous advances in overcoming challenges in fuzzing.
However, the issue of mutating complex file formats, such as PDF,
remains unresolved due to strict constraints. Existing fuzzers of-
ten produce mutants that fail to parse by applications, limited by
bit/byte mutations performed on input files. Our observation is that
most in-memory representations of file formats are simple, and
well-designed applications have built-in printer functions to emit
these structures as files. Thus, we propose a new technique that
mutates the in-memory structures of inputs and utilizes printer
functions to regenerate mutated files. Unlike prior approaches that
require complex analysis to learn file format constraints, our tech-
nique leverages the printer function to preserve format constraints.
We implement a prototype called FuzzInMem and compare it with
AFL as well as other state-of-the-art fuzzers, including AFL++,
Mopt, Weizz, and FormatFuzzer. The results show that FuzzInMem
is scalable and substantially outperforms general-purpose fuzzers
in terms of valid seed generation and path coverage. By apply-
ing FuzzInMem to real-world applications, we found 29 unique
vulnerabilities and were awarded 5 CVEs.

CCS CONCEPTS
• Software and its engineering; • Security and privacy→ Soft-
ware and application security;

KEYWORDS
Fuzzing, Software testing, Program synthesis

ACM Reference Format:
Xuwei Liu, Wei You, Yepeng Ye, Zhuo Zhang, Jianjun Huang, and Xiangyu
Zhang. 2024. FuzzInMem: Fuzzing Programs via In-memory Structures . In
2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639172

’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639172

1 INTRODUCTION
Coverage-based Greybox Fuzzing is a widely-used software testing
technique for vulnerability discovery. It has proven to be one of
the most effective security analysis approaches, leading to the iden-
tification of many high-impact security flaws. A critical step for
fuzzing is the generation of inputs that can cover various program
paths and increase the chance of exposing security vulnerabilities.
Modern fuzzers typically address this problem by either generating
seed inputs following a specific input model or mutating a set of
initial seed inputs. However, there are a few hard challenges, even
for the state-of-the-art fuzzers.

Generation-based fuzzers [1, 6] rely on an input model describing
the input format to produce legitimate test cases. Although the
input model can sometimes be recovered from execution traces or
program source codes by reverse engineering techniques, in most
cases, fuzzers require experts with domain knowledge to provide
input specifications. However, the model may be too complex to be
complete and lack semantic constraints dictating relations across
multiple input fields. As a result, they may not lead to good path
coverage. In addition, inputs exploiting vulnerabilities are usually
ill-formed files that do not follow input models. Generation-based
fuzzers lack the ability to generate such ill-formed seed inputs.

A more popular way is mutating existing seed inputs at the bit
and byte level to generate variants that allow exploring new pro-
gram regions [3, 5]. While this approach works well for simple
and less constrained inputs, it may not be effective for inputs with
complex structure and/or intensive cross-field constraints. These
fuzzers tend to spendmuch time generating numerous inputs which
however are rejected in the initial parsing stage, resulting in little
code coverage improvement. Researchers mitigate this problem by
adopting different seed scheduling [14, 21, 42, 51], energy alloca-
tion strategies [11, 32, 55], and coverage feedback [10, 25]. Hybrid
fuzzers [48, 56] combining symbolic execution and mutation-based
fuzzing help reach deep states of a program and explore more pro-
gram paths. However, their efficacy heavily depends on how well
the symbolic execution component handles the path conditions in
the target program. For example, they may struggle in dealing with
length and offset constraints [30, 53].

We argue that input generation is essentially a search within
an intrinsically constrained input space starting from some initial
input. The objective is to mutate the input as much as possible while

1

https://doi.org/10.1145/3597503.3639172
https://doi.org/10.1145/3597503.3639172

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xuwei Liu, Wei You, Yepeng Ye, Zhuo Zhang, Jianjun Huang, and Xiangyu Zhang

keeping input validity. In other words, a good mutant should pass
the parsing stage of a program (low parsing errors) but vary from
other seeds after parsing (better variation). Mutation-based fuzzers
can hardly satisfy both conditions because the low-level bit/byte
modification either fails in parsing or incurs insufficient mutations.
Hybrid fuzzers can generate interesting seeds but may not scale
well in some cases. As a result, an efficient mutation technique that
can explore deep program states is desired.

In this paper, we propose a novel technique that mutates in-
memory data structures corresponding to inputs and reuses the
target program logic to emit the mutated structures back to files.
We develop an algorithm to analyze the application to find the key
data structures, by locating parser functions and then data struc-
tures accessed by those functions. A synthesizer is then leveraged
to analyze the source code and synthesize code to automatically
mutate the in-memory structures following a number of strategies.
In particular, new header files are generated to redefine the key
data structures. The re-definitions are compatible with the original
definitions but individual field types may be changed to facilitate
mutation. For example, some key fields such as callback function
pointers and constants are set to immutable as mutations may com-
pletely break their semantics. Mutation functions are also generated
to operate based on the re-defined data structures. At runtime, our
tool monitors and intercepts the subject program’s execution after
it finishes parsing and populates the key data structures. It then
casts the key data structure instances to their re-defined types
and passes them to the mutation functions, which mutate them in
memory, e.g., by changing, deleting, inserting, and reusing fields.
We further observe that many popular applications have built-in
printer functions (see Section 4.1) that export in-memory structures
while constructing format constraints on the way (e.g., setting data
length by counting the number of data items in memory), from the
least-constrained in-memory data. We hence reuse the printer func-
tions in applications to dump the mutated in-memory structures
into data files that satisfy format constraints. The emitted data files
are hence used in further fuzzing.

Our contributions are summarized as follows:

• We developed a novel technique for mutation-based fuzzing.
Starting from a seed input, it parses the input, modifies the
in-memory structures, and reuses the printer function to
emit valid data files that serve as high-quality seeds.
• We developed a technique that automatically synthesizes
data structure definitions and corresponding mutation func-
tions based on the original definitions of key data structures.
• We developed a prototype called FuzzInMem, evaluated it
on 15 real-world applications and compared it with state-
of-the-art fuzzers including AFL, AFL++, Mopt, Weizz and
FormatFuzzer. Our results show 42%-70% improvements in
path coverage and 10x-10000x in valid seed generation.
• We found 29 new unique vulnerabilities and 5 exploitable
CVEs by applying FuzzInMem on real-world applications.

2 MOTIVATION
We use PDF format as an example to explain the limitations of
existing techniques and motivate the idea of FuzzInMem.

Header

Objects

 Xref Table

Trailer

 End of file

%PDF-1.7

1 0 obj

<</Type /Catalog

 /Names <</Dests 2 0 R>>

 /Pages 3 0 R>>

endobj

2 0 obj

<< /Kids [2 0 R]

 /Limits [(wl0 (wl0)]>>

endobj

xref

0 17

0000000000 65536 f

0000000009 00000 n

0000000060 00000 n

...

trailer

<< /Size 17 /Root 1 0 R>>

Startxref

21829

%%EOF

...

16 0 obj

<</Filter /FlateDecod

 /Length 740>>

stream

…
endstream

endobj
21829

9

60

c

c1

c2

c3

c4

c5

b1

b2

b16

b

a

d

e

1Step 1Step

5Step 5Step

3Step 3Step

4Step 4Step

2Step 2Step

...

...

Figure 1: The structure of a PDF file

2.1 PDF and PDF Reader
Portable Document Format (PDF) [52] is one of the most popular
formats to represent documents in a manner independent of appli-
cation software, hardware, and operating systems. Based on the
PostScript language, a PDF file encapsulates a complete descrip-
tion of a document in a fixed layout, including text, fonts, vector
graphics, raster images, and meta information needed to display it.

The PDF structure as in Figure 1 consists of several parts: header,
body, cross-reference table (xref table), trailer, and end-of-file indi-
cator. The header a○ is the first line of a PDF file that specifies the
version of PDF specification. The body section b○ holds all the docu-
ment’s objects being shown to the user, including texts, images, etc.
There are in total 9 different data types for objects, among which 6
are primitive types (null, booleans, numbers, names, strings, and
indirect references) and others are composite types (arrays,
dictionaries, streams). Dictionary and stream are the most com-
mon objects in PDF files. A dictionary is a composite type holding
name-value pairs. For example, object b1 (the second grey box from
the top) is a dictionary with three name-value pairs denoting three
properties. Specifically, the first property has name “/TYPE” and
value “/Catalog” indicating that it is a special type of dictionary
called catalog dictionary; the second property is a sub-dictionary
called “/Names” that supports name look-up; and the third is an
indirect reference called “/Page” that points to the third object in
the body section denoting a page tree representing pages in the
document. A stream, e.g., object b16, consists of text content (delim-
ited by stream and endstream) and a description dictionary that
indicates the stream length (e.g., 740) and optional encryption algo-
rithms (e.g., the “FlateDecod” algorithm). Objects refer to others by
indirect references (highlighted in blue). The xref table c○ records
the offsets (highlighted in red) and status of all the objects in the
document, which allows random access to objects in the PDF. Each
object has an entry in the xref table, which is always 20 bytes long.
The PDF trailer d○ points out this PDF’s root object (from which
the whole rendering procedure starts) by an indirect reference to

2

FuzzInMem: Fuzzing Programs via In-memory Structures ICSE ’24, April 14–20, 2024, Lisbon, Portugal

the catalog dictionary. The end-of-file indicator e○ specifies the
offset pointing to the first item in the xref table (e.g., 21829).

Poppler [7] is a cross-platform open-source PDF library sup-
porting various PDF operations and we show how it parses each
segment of a valid PDF file. When the file presented in the right of
Figure 1 is passed to Poppler, the program first checks the header a○
to ensure that version 1.7 is valid (Step 1○). Then it searches for the
magic number “startxref” at the end-of-file indicator e○ and reads
the offset of the xref table (Step 2○). It then jumps to the xref table
c○ and checks if the table starts with the magic number “xref” (c1).
The xref table is parsed so that indices of objects in the file body are
stored for fast random access (Step 3○). After reading the xref table,
the trailer d○ is located and parsed as a dictionary object (Step 4○).
Poppler looks up the “root” item in the dictionary and learns that
the root object of the PDF file is b1. Object b1 is fetched from the
file by the index stored in the xref table. Finally, Poppler checks
whether the retrieved object is a catalog and fetches the referred
objects (according to the records in the xref table) to start rendering
the PDF objects (Step 5○). The rendering process is handled in a
recursive way. For example, b1 refers to b2 and b3, which further
refer to other objects, so Poppler renders all the referred objects
recursively until no new references are found.

2.2 Limitation of existing techniques
Fuzzing. Vanilla fuzzers (e.g., AFL [3], AFL++ [18] and Mopt [31])
leverage various strategies such as genetic algorithms to randomly
mutate inputs. They have found many vulnerabilities in many dif-
ferent applications. However, they have difficulties fuzzing PDF
files. The main reason is that objects in PDFs cannot be randomly
mutated as they have complex syntactic and semantic constraints.
For example, a dictionary object contains multiple mandatory name-
value pairs. Corrupting any pair may result in the early termination
of PDF rendering. Grammar-based fuzzers (e.g., gramfuzz [2]) ac-
cept user-defined grammars and can provide syntactic guidance in
mutation. However, they still have difficulties satisfying semantic
constraints. For example, the length of a mutated object may be
inconsistent with its content after modification, which may fur-
ther corrupt all the following offsets in the xref table. Considering
changing the length of b1 in Figure 1, then the offsets of the re-
maining 15 objects are broken. In fact, even the offset of xref table
in the end-of-file indicator is corrupted. Respecting these complex
semantic constraints is beyond the scope of grammar-based fuzzers.
In addition, modifying b16 (an encoded stream with length 740) is
also extremely challenging for grammar-based fuzzers as directly
mutating the encoded raw bytes may cause failures in decoding
and/or uncontrolled length changes after decoding failing the length
check. To mitigate some of these problems, structure-aware fuzzers
(e.g. AFLsmart [39] and Weizz [17]) utilize format specifications or
learn file formats during the fuzzing process to enforce semantic
constraints. However, the input formats are too complicated to be
complete, and they still have difficulties dealing with the highly
complex semantic constraints in PDF files. As a result, none of the
existing fuzzers can automatically mutate PDF files.

Symbolic execution. Symbolic execution engines (e.g., ANGR [47]
andQSYM [56]) execute programs symbolically and derive symbolic

expressions for variables during execution. When branches are en-
countered, it forks states to explore both paths and invokes an SMT-
solver to generate test cases satisfying the symbolic path constraints.
In theory, it handles both syntactic and semantic constraints and can
be used to generate PDF files. However, PDF files usually include
lots of objects (e.g., thousands) that entail an exceptionally large
number of symbolic constraints, with many falling into the hard-to-
resolve categories (e.g., symbolic indexing/offsetting [30, 53]) and
requiring unrolling a loop many times. Both pose hard challenges
for existing symbolic execution techniques.

2.3 Our technique
We observe that for file formats with complex syntactic and seman-
tic constraints (e.g., PDF), there are usually applications that emit
such files (e.g., PDF save-as/printing). In other words, there are
printer functions that convert in-memory data structures to valid
files. More importantly, the aforementioned syntactic and semantic
constraints are usually generated during the printing procedure,
whereas data in memory are often in much-relaxed forms (e.g., fully
decoded). Specifically, during parsing, the complex constraints are
checked and file content is decoded into internal data structures
(e.g., structs and arrays) in memory which do not have any explicit
constraints (e.g., offset constraints). Instead, these constraints like
those for the object offsets and the xref table offset in PDF files are
constructed during printing. In the PDF reader Poppler, a printer
function SaveAs() is responsible for such calculation.

Instead of directly mutating input files, we hence propose to
mutate in-memory data structures and then reuse existing printer
functions to emit the mutated data structures to files that are fur-
ther used in testing. Specifically, our tool FuzzInMem mutates in-
memory objects (e.g., delete, insert, and modify fields) for an appli-
cation that processes the target file format. Then a built-in printer
function of the application is reused to emit the mutated data struc-
tures to a file. The file is further used to test a target application.
The target application may or may not be the one whose printer
function is reused, called the repurposed application. Similar to other
fuzzing techniques, coverage of the target application is used to
improve in-memory mutation in the reused application. For exam-
ple, the b1 in Figure 1 is parsed to a Dict data structure, which can
be directly mutated in memory, e.g., adding an outline attribute to
the dictionary. More discussion can be found in Section 3.3. Then
the printer function SaveAs() is reused to emit the PDF. The printer
function recomputes all the offsets and sizes and the mutated PDF is
valid by construction. Due to its ability to produce complex inputs
and perform sophisticated mutations, FuzzInMem can find deep
bugs and achieve better code coverage. For example, it gets 65%
more path coverage than a state-of-the-art structure-aware fuzzer
Weizz and finds 20 unique bugs in PDF applications with 4 CVEs.

3 DESIGN
Figure 2 presents the overview of FuzzInMem. An application that
can be repurposed for in-memory mutation usually consists of sev-
eral parts, including a parser, data processor, and content printer. In
part A○, FuzzInMem searches for the important in-memory struc-
tures generated during parsing files. It locates parser functions

3

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xuwei Liu, Wei You, Yepeng Ye, Zhuo Zhang, Jianjun Huang, and Xiangyu Zhang

Parser Processor Printer

MutatorSynthesizer

MutantsInput

Target

Application

Repurposed Application

Header

Type Content

Mutation Rules

A C

B

FuzzInMem

x x

Feedback

Figure 2: Overview of FuzzInMem
where in-memory structures are generated and intercepts the con-
trol flow of the application to instrument code for mutation pur-
poses. FuzzInMem employs a synthesizer that takes source codes
as well as some user-defined mutation rules like a magic number
dictionary to automatically generate a mutator (B○). The mutator
is instrumented into the place found in part A○, which takes the in-
memory structure as input and modifies it to generate in-memory
data structure mutants. The mutated in-memory structure is no
longer passed to the processor but instead to the printer which
FuzzInMem finds in C○ by taint analysis. The printer ensures the
validity (of the emitted file) as it derives appropriate sizes and offsets
based on mutated structures. Note that, in many cases it can even
crop mutated structures, e.g., discarding array elements that exceed
the size value. The mutant is then passed to the target program and
the coverage feedback is collected by the mutator to guide further
fuzzing. FuzzInMem is based on AFL so it inherits the bit/byte muta-
tions. It supports additional in-memory fuzzing by communicating
with the memory mutator using pipe and shared memory.

3.1 Locate key structures
FuzzInMem needs to find the in-memory (key) structures to mutate,
which represent the whole input file inside memory. Observe that
most programs generate in-memory structures when parsing input
files and the structures are referred to in function parameters or
return values. Hence, FuzzInMem first locates parser functions in
order to extract these structures. FuzzInMem finds parser func-
tions by employing a dynamic analysis technique to get the call
sequences of the application and performing a comparative analysis
(of sequences) to locate the start and end of the parsing.

We develop Algorithm 1 to help identify a set of top-level user-
defined functions (excluding the main function) that are executed
during a test, in which parser functions must fall into. Comparative
analysis using two different test cases is used to identify the parser
function(s). Specifically, given an execution trace 𝐸 of the target
program, Algorithm 1 computes a call sequence 𝜉 that only contain
top level user-defined functions and a set Σ of read functions. The
loop in lines 2-9 is to generate a call trace with each trace entry
consisting of a function invocation and its call depth. The second
loop in lines 10-16 simplifies the trace by removing library func-
tions and user-defined functions that are not top. Whenever a call
instruction is encountered, the called function is pushed into a call
stack 𝑆 (line 4), and the function 𝑓 and its call depth |𝑆 | are added
to the call trace (line 5). If the function is a read API (e.g. read and
fread), all the functions in the current call stack are added into
the read function set Σ which contains candidate parser functions
because parser functions or their parents tend to include calls to
read APIs. If a return instruction is encountered, the last function
is popped from the call stack (lines 8-9) to ensure validity of the

Algorithm 1: Call sequence generation.
Input :execution trace of the target application (𝐸)
Output :call sequence (𝜉) and read function set (Σ)

1 Σ, 𝜉, 𝑆 ← ∅
2 for 𝜄 ∈ 𝐸 do
3 if 𝜄 == 𝑐𝑎𝑙𝑙 𝑓 then
4 𝑆 ← 𝑆 · 𝑓
5 𝜉 ← 𝜉 · (𝑓 , |𝑆 |)
6 if 𝑓 ∈ 𝑟𝑒𝑎𝑑 then
7 Σ← Σ ∪ 𝑆

8 if 𝜄 == 𝑟𝑒𝑡 then
9 𝑆 · 𝑓 ← 𝑆

10 for (𝑓 , 𝑑) ∈ 𝜉 = 𝜉1 · (𝑓 , 𝑑) · (𝑓 ′, 𝑑 ′) · 𝜉2 do
11 if 𝑓 ∈ 𝐹𝑒𝑥 then
12 repeat
13 𝜉 ← 𝜉1 · (𝑓 , 𝑑) · 𝜉2
14 until 𝑑 ′ ≤ 𝑑 ;

15 else
16 𝜉 ← 𝜉1 · (𝑓 ′, 𝑑 ′) · 𝜉2

17 return 𝜉, Σ

call stack. After the first loop, the call trace includes many low-
level functions such as strcmp, memcmp, malloc, etc, FuzzInMem
simplifies it by deleting these low-level functions. In particular, the
functions declared in the application’s header file are defined as
export functions 𝐹ex. FuzzInMem iterates the call sequence and
deletes all non-export functions like parseArgs, strcmp, etc (line 16).
FuzzInMem also removes functions whose ancestors are export
functions (lines 12-14). That is, only top level export functions are
retained. This step removes all sub-functions like sub parsers which
parse only a specific section in the file. It is worth noting that the
complex applications considered in this paper have modular de-
signs such that their parsers are usually in parsing modules with
their header files.

Next, we employ a comparative analysis to identify the start and
end points of the parsing process. In our analysis, we acquire two
call traces by Algorithm 1 using two inputs. Let 𝜉𝐴 and 𝜉𝐵 be the
two call traces. The last common read function LCRF is calculated
according to Equation 1. In essence, it is defined as the last read
function in the longest common sequence of 𝜉𝐴 and 𝜉𝐵 .

𝐿𝐶𝑆 = 𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝑆𝑒𝑞 (𝜉𝐴, 𝜉𝐵)
𝐿𝐶𝑅𝐹 (𝜉𝐴, 𝜉𝐵) = 𝐿𝐶𝑆 [𝑖]

𝑠.𝑡 . (𝐿𝐶𝑆 [𝑖] ∈ Σ) and (∀𝐿𝐶𝑆 [𝑗] ∈ Σ⇒ 𝑖 ≥ 𝑗)
(1)

We perform a two-stage process to identify the start and end of
parsing. In the first stage, we find the start of the parsing function
𝐿𝐶𝑅𝐹𝑠 by comparing the call sequence of execution with an invalid
seed 𝜉𝐼𝑆 and the call sequence with a valid seed 𝜉VS. In the second
stage, we determine the end of the parsing function 𝐿𝐶𝑅𝐹𝑒 by
searching for the last common point of two call sequences (𝜉VS𝐴
and 𝜉VS𝐵) generated from two executions with different valid seeds.
The analysis is based on the following observations: (1) Both valid
and invalid seeds reach the start of the parsing stage but invalid
seeds fail the parser and exit. (2) Valid seeds share the same end of
the parsing stage. As a result, parser functions are the read functions
between the start and end of the parsing functions in a common
sequence LCSVV of two valid seeds:

4

FuzzInMem: Fuzzing Programs via In-memory Structures ICSE ’24, April 14–20, 2024, Lisbon, Portugal

GlobalParams

getTextEncoding

createPDFDoc

getNumPages

printInfo

(b) Call Sequences

(c) Simplied Sequences

(d) Common sequence

GlobalParams

getTextEncoding

createPDFDoc

1: parseArgs

2: strcmp

1: GlobalParams

2: NameToCharCode

3: opendir

1: getTextEncoding

1: createPDFDoc

2: buildPDFDoc

16: read

1: getNumPages

1: printInfo

...

GlobalParams

getTextEncoding

createPDFDoc

ReadFunc

Valid Invalid

parseArgs

main

strcmp

GlobalParams

NameToCharCode

opendir

getTextEncoding createPDFDoc

buildPDFDoc

...

read

getNumPages printInfo

(a) Call Graph

ReadFunc ReadFunc

ReadFunc

...

Figure 3: The process to the parser function. Grey nodes are
export functions and white nodes are non-export functions.

𝐿𝐶𝑆𝑉𝑉 [𝑠𝑡𝑎𝑟𝑡] = 𝐿𝐶𝑅𝐹𝑠 = 𝐿𝐶𝑅𝐹 (𝜉 𝐼𝑆 , 𝜉𝑉𝑆)
𝐿𝐶𝑆𝑉𝑉 [𝑒𝑛𝑑] = 𝐿𝐶𝑅𝐹𝑒 = 𝐿𝐶𝑅𝐹 (𝜉𝑉𝑆𝐴 , 𝜉𝑉𝑆𝐵)

𝑃𝑎𝑟𝑠𝑒𝑟 = {𝐹𝑢𝑛𝑐 |𝐹𝑢𝑛𝑐 = 𝐿𝐶𝑆𝑉𝑉 [𝑖] ∧ 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑖 ≤ 𝑒𝑛𝑑 ∧ 𝐹𝑢𝑛𝑐 ∈ Σ}
(2)

After FuzzInMem finds the parser functions, it iterates through
their prototypes to get the types of parameters and the return values.
The structure types we collect are called key structures that will be
mutated later. We also find the instrumenting point for our mutator,
which is right after 𝐿𝐶𝑅𝐹𝑒 in the valid sequence.

Example. Figure 3 shows how we find the parser function in Pop-
pler. Figure 3(a) is part of the call graph for a valid seed where the
function in red is the parser function and the nodes in the dashed
boxes are read functions. An execution traverses the graph in the
pre-order, yielding a call sequence in Figure 3(b) with the numbers
denoting the call depth. The functions in white (parseArgs, strcmp
and read) are non-export so they are deleted. Then NameToChar-
Code and buildPDFDoc are deleted as their ancestors (GlobalParam
and createPDFDoc) are export functions. As a result, the call se-
quence is simplified to the sequence in Figure 3(c). We get the
longest common sequence in figure 3(d) by comparing the valid
and invalid sequences. The GlobalParams and createPDFDoc are
both read functions but createPDFDoc is the last function in the
sequence so it is the start of parsing functions. In fact, GlobalParams
does configuration and determines the encoding of the file so it
is not a parser function. Note createPDFDoc is also the end of the
parsing stage since the two valid sequences are the same in this
case. Hence, we learn the only parser function is 𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝐷𝐹𝐷𝑜𝑐
and its return value (whose type is PDFDoc∗) is the key structure.

3.2 Mutator Synthesis
In this section, we discuss how to automatically synthesize the
mutator that changes in-memory structures. The idea is illustrated
in Figure 4. The synthesizer takes a key data structure Object on the
left, and derives a set of new data structures on the right, one for
each structure referred to in Object. The new structures normalize
fields in the key structure to a few orthogonal types, each having its

...
class Object{
 ObjType type;
 union {
 bool booln;
 int intg;
 long long int64g;
 double real;
 GooString *string;
 char *cString;
 Array *array;
 Dict *dict;
 Stream *stream;
 Ref ref;
 };
};

...
struct Ref{
 ...
};
union anony1{
 i8 booln;
 ...
 Ref ref;
};
enum ObjType{
 ...
};
class Object{
 ObjType type;
 union anony1 anonyfield1;
};

(a) Source codes (b) Synthesized codes

Figure 4: Synthesize structures from source codes.

⟨Struct⟩ 𝜓::= (𝜏, 𝜙) | ⊣ 𝑠
⟨Type⟩ 𝜏::= 𝜓 | 𝜏* | 𝜏[] | 𝜆 | int | float ...
⟨Field⟩ 𝜙::= 𝑠 ⟨String⟩ 𝑠
⟨Enum⟩ 𝜆::= (𝑠, 𝑖𝑛𝑡)

Figure 5: Type system for memory fuzzing.

corresponding mutation strategy. For example, the GooString field
in the structure Object is normalized to a string type by removing
the original typedef. As such, it is mutated by mutate_str() during
fuzzing. Our synthesizer also generates mutation functions that cast
instances of key structures to their normalized versions, traverse the
normalized structures, and perform the corresponding mutations.

FuzzInMem defines a basic type system to describe structures
synthesized from source code as shown in Figure 5. A structure𝜓 is
a vector of pairs, each consisting of a field 𝜏 and its type 𝜙 when the
header file containing the structure is part of the project. That is, it is
a custom type. Otherwise, if the structure is only defined in a third-
party library header file, it is denoted by a structure name 𝑠 . The
type 𝜏 can be categorized into primitive, structure, and reference.
Primitive types include four integer types, two float types, the void
type, and enumeration types. An enumeration type 𝜆 is a list of
strings and corresponding integer values. Reference types include
arrays and pointers referring to other types. Starting from the key
structures we find in 3.1, our tool synthesizes all descendent custom
types that are referred to in key structures, in a recursive way.
Algorithm 2 depicts how the algorithm takes a key data structure
definition𝜓 in source code and generates the synthesized definition
𝜓 ′. Each type-field pair (𝜏, 𝜙) in the structure definition is iterated.
If a type definition is not found in the source code, we can not
synthesize the field type and the compiler complains. To address
this problem, we mark the field as a constant type and fill in the
field hole with the exact size of the field in structure 𝑠 (lines 3-4). In
detail, we learn the field size from compiler debugging information
and use a constant byte array to replace the original field type in the
new definition. If the field is another structure type, we recursively
synthesize the field type (lines 5-7). We copy the enumeration
definition from the original code to make the type system complete
if an enum field is found (lines 8-10). For primitive types, we simply
add the type and the field into the new definition. Traversing key
structures, we construct new definitions that are compatible with
the original key data structure definition. This is critical as we can

5

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xuwei Liu, Wei You, Yepeng Ye, Zhuo Zhang, Jianjun Huang, and Xiangyu Zhang

Algorithm 2: Synthesize(𝑠)
Input :𝜓 : Structure definition in source code.
Output :𝜓 ′ : Synthesized structure definition.

1 𝜓 ′ ← nil
2 foreach (𝜏 , 𝜙) ∈ 𝜓 do
3 if 𝜏 ==⊣ 𝑠 || 𝜏 == 𝑐𝑜𝑛𝑠𝑡 then
4 𝜓 ′ ← 𝜓 ′ · (“const byte[sizeof(struct s)]”, 𝜙)
5 else if 𝜏 == 𝜓1 then
6 𝜓 ′ ← 𝜓 ′ · (𝜏, 𝜙)
7 synthesize (𝜓1)
8 else if 𝜏 == 𝜆 then
9 𝜓 ′ ← 𝜓 ′ · (𝜏, 𝜙)

10 define (𝜆)
11 else
12 𝜓 ′ ← 𝜓 ′ · (𝜏, 𝜙)

13 return𝜓 ′

cast an in-memory instance to our type. In the following, we discuss
the mutation strategies for different types.
Primitive types. When mutating primitive types, FuzzInMem
assigns different values to a target field. We pre-define functions
for primitive types which support multiple mutation strategies,
including interesting values, bit/byte flipping, shifting, adding, and
random values. These operations are analogous to AFL’s mutation
strategies. Other mutation strategies can be easily added for the
primitive types. A special case is enumeration, which is a custom
type consisting of distinct values in FuzzInMem. Our synthesizer
can correctly recognize enumeration types and generate special
mutation functions for each enumeration type, which mutates the
enumeration to every possible value.
Structure types. Structure types are essentially a reference tree,
in which a child node represents a field of the structure denoted
by the parent node. FuzzInMem traverses the tree and replaces
the content of each node with instance values of the same type.
To find candidate instances, FuzzInMem performs signature-based
memory scanning. In particular, FuzzInMem instruments each com-
posite type by adding a signature field during compilation and then
scans the memory to extract all instances of each type at run time.
These instances form a pool to support mutation. Containers such
as vectors in C++, are special structure types. The length of a vector
should always match the element number of the array. A modifi-
cation to only the length or the array is likely to fail the printer.
Therefore, FuzzInMem treats them as a whole and modifies the
length and the array at the same time by invoking built-in APIs,
which automatically observe the constraints. Nodes containing con-
stant type qualifiers are immutable because either we do not know
their internal fields or the mutation violates the semantics.
Reference types. For array types, FuzzInMem knows the exact
number of elements stored in the array from the synthesizer so it
can randomly select elements in the array to continue mutation.
FuzzInMem also performs shuffle mutation to exchange orders of
elements. The pointer of primitive types will be dereferenced and
FuzzInMem mutates the underneath type without the pointer. For
the pointer of composite types, FuzzInMem mutates it to point to
the candidate instances of the underneath type. Note FuzzInMem
also maintains a set and records the changed pointers to avoid
dead loops caused by recursive reference. In addition, FuzzInMem

maintains a memory pool for int8∗(char∗) so it supports magic
number and string fillings.
Example. Figure 6 demonstrates how a structure in PDF is mutated
in memory. Figure 6(a) presents the type information of the target
structure as a tree. Figure 6(b) shows an instance. We show the
address if a node is a composite type and the stored values otherwise.
PDFDoc is a structure found with the parser of Poppler. It has two
integer fields with values 1 and 7 indicating PDF versions and a
pointer pointing to the cross-reference table. The XRef structure
includes a dynamic array XRefEntry∗, an integer 17 indicating the
array length, and an enumeration telling the applied encryption
algorithm. XRefEntry∗ has an enumeration describing the status
of the entry and also stores its related object, which consists of a
union and an enumeration telling the object type. The object in the
instance is an integer with a value of 32. Starting from PDFDoc, we
can perform primitive mutation on one of its children, changing
the value from 7 to 0, which changes the PDF version from 1.7 to
1.0 (in Figure 6(c)). FuzzInMem dereferences the pointer XRef∗ and
mutate its children. FuzzInMem samples and accesses XRefEntry∗
array and mutate an element. Since XRefEntry is a composite type,
a known object collected from the memory pool is used to replace
contents (in the red part of Figure 6(d)), which changes the integer
object to a dictionary object. FuzzInMem can further mutates the
Dict* in Figure6(d) by reference. It replaces the whole dictionary
with another instance in memory by rewriting the address of the
Dict∗ pointer. The mutation stops when all the nodes are mutated or
a maximum recursion limit is reached. Note Dict∗ has a field XRef∗
which stores the same address as the one in PDFDoc. FuzzInMem
detects such a circle by saving the pointer values and checking
at the beginning of mutating functions to avoid a dead loop. If a
field mutation leads to new coverage as measured by AFL, it is
considered promising and has more mutation energy.

3.3 Reuse printer function
To emit mutated in-memory data structures, FuzzInMem reuses a
printer function to regenerate data files from these structures. The
printer function (implicitly) checks the integrity of the in-memory
structure when emitting it. If the structure is not broken, the printer
outputs a new data file while following the format constraints.
Otherwise, the printer fails and exits (e.g., crashes).

FuzzInMem locates printer candidates in the source code by
static taint analysis using LLVM. Specifically, it looks for functions
that take the key structure as the argument and outputs data that
originate from the key structure. This can be achieved by marking
the structure as source and the file output as sink. The analysis is
lightweight, taking only a few seconds to finish.

A major challenge is that printer functions may fail in exporting
in-memory structures or even crash due to failing integrity checks.
We mitigate this problem by analyzing in-memory constraints.
We observe that most printer failures are due to the mismatch of
some invariant integer in for-loops with the length of dynamic
arrays. That is when mutating an integer, the integer likely serves
as the length indicator of another pointer field. Such relationships
(a length integer and a pointer pointing to an array) are called
dynamic arrays. Increasing the length integer alone can trigger
invalid accesses to the array and crash the printer.

6

FuzzInMem: Fuzzing Programs via In-memory Structures ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Object

i32(enum)union

PDFDoc*

i32i32 XRef*

i32XRefEntry*

i32(enum)

Mutation Entry

i32(enum)

objInt

71 0x61200040

17

Uncompressed

Mutation Entry

cryptNone

32

objInt

01

17

Mutation Entry

cryptNone

32

objDict

71

17

Mutation Entry

cryptNone

vector

Dict* i64

XRef*

objDict

71

17

Mutation Entry

cryptNone

(a) Mutation Tree (b) An instance (c) Primitive mutation (d) Structure mutation (e) Reference mutation

0x62e00400

0x61000140

0x62e00440

0x62e00448 0x62e00448

0x62e00440

0x62e00400

0x61200040

0x61000140 0x61000140

0x61200040

0x62e00400

0x62e00440

0x62e00448

0x607010c0

0x612000400x607010c8 0x61700118

0x61700110

0x62e00448

0x62e00440

0x62e00400

0x61200040

0x61000140

0x61200040

Uncompressed Uncompressed Uncompressed

Figure 6: Mutations of the PDF structure. Blue nodes are primitive types and grey nodes are composite types.

01 uxref = XRef();
02 writeHeader(outStr);
03 for(i=0; i<xref->numObjects; i++)
04 obj = xref->fetch(i);
05 offset = writeObjectHeader(i, outStr);
06 writeObject(obj, outStr);
07 writeObjectFooter(outStr);
08 uxref->add(i, offset);

09 unxrefOff = outStr->getPos();

10 writeXRefTable(uxref, outStr);
11 trailer = xref->getTrailerDict();
12 writeTrailer(trailer, outStr);
13 writeEOF(unxrefOff, outStr();

Figure 7: Printer function for Poppler.

vector<pair>

vector[0]

/Type /Catalog /Names

vector<pair>

vector[0]

/Dest 2 0 R

/Outlines Dict*

Dict*

Dict*

vector[1] ...

vector[3]

(a) Structure changes (b) File changes

1 0 obj <<

/Type /Catalog

/Names <</Dests 2 0 R>>

/Pages 3 0 R

/Outlines <<>>

>> endobj

xref

0 17

0000000000

0000000009

0000000080

…
startxref

21849

xref

0 17

0000000000

0000000009

0000000060

…
startxref

21829

16 offsets

Figure 8: Print a modified PDF structure.

Unlike containers, primitive dynamic arrays have no built-in
APIs to help mutation, and hence we perform dynamic analysis to
probe the length-array relationships. We observe that the length
and the array tend to exist in the same structure near each other.
For each array, we only search for the corresponding length within
the same structure. We select an integer field to see if it matches the
length of an array. If it does not match, the integer field is unlikely
to be the length of the array. In contrast, length constraints on file
inputs are usually convoluted in other arithmetic/string constraints,
making them hard to satisfy.

Example. Figure 7 is the printer function we found in Poppler and
Figure 8 shows how the printer emits a modified PDF structure to
a file. During mutation, our tool changes the first object in the file
and attaches a new name “Outlines” with an empty dictionary to
the vector nodes shown in Figure 7(a). When printing the structure,
the printer first emits the header, which indicates the PDF version
(line 2). Then it emits the objects using a for-loop. It learns that
there are 17 objects in the cross-reference table and prints the object
one by one (line 3). The first object is a dictionary object so a sub-
printer writeObject() reads the size of the vector in the dictionary
and outputs each pair (line 6). Due to our constraint-preserving
mutation, the length of the vector matches the number of elements
so the printer can correctly print the new pair (Outlines in Figure
7(b)). When printing the object, the printer records the offset of
each object (line 8). Then a new cross-reference is constructed by
the recorded offsets (lines 9-10). The end-of-file is also recalculated
and filled in at the correct place (line 13). The number in red in
figure 8(b) shows the difference between the old file and the gen-
erated file. To add a new key in an object, we need to modify 16
positions to the original file to keep it valid. It is almost impossible
for traditional fuzzers to perform so many mutations accurately.
However, due to the valid-by-construction nature of the printer and
the corresponding in-memory mutations, FuzzInMem manages all
objects and offsets correctly, leading to a valid seed.

4 EVALUATION
We study and answer the following research questions:

RQ1. How popular are printer functions in applications?
RQ2. Can FuzzInMem automatically locate key structures and

synthesize the codes to generate mutators?
RQ3. How does FuzzInMem compare to state-of-the-art fuzzers

in terms of seed generation and code coverage?
RQ4. Can FuzzInMem help find vulnerabilities?

4.1 RQ1: Popularity of printer functions
FuzzInMem relies on the printer functions to validate and dump the
in-memory modification. A straightforward question is whether

7

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xuwei Liu, Wei You, Yepeng Ye, Zhuo Zhang, Jianjun Huang, and Xiangyu Zhang

printer functions widely exist in real-world applications. Observe
that applications usually use open-source third-party libraries for
parsing, to answer this question, we investigate a total of 71 libraries,
which cover a wide range of file formats, including language parsers,
image, audio/video, document, archive, font, and protocol file for-
mats. These libraries are from Google Fuzzer’s Test Suite, other
fuzzing papers, or GitHub with more than 100 stars.

Our investigation results show that 67.61% (48 out of 71) libraries
have printer functions. Specifically, all audio, video, and archive
libraries have printer functions because they always include both
encoder and decoder for the compression and depression algorithm.
90.91% document libraries and 79.16% image libraries also contain
printer functions because most libraries support editing documents
and images. Only a few language parsers support dumping the in-
memory structures. None of the font and protocol libraries include
printer functions. In conclusion, printer functions widely exist in
libraries, especially in visualized file format and archive file format
but rarely exist in grammar-related libraries and font libraries.

4.2 RQ2: Key structures and synthesizer results
Benchmark. Our evaluation is performed on 15 real-world appli-
cations from Google fuzzer-test-suite [4] and commonly fuzzed
programs in other projects [13, 17, 18, 31, 54] for comparison pur-
poses. We aim to cover a wide range of format categories. For each
category, we select the most reputable program (i.e., having the
most stars on Github). The benchmark covers various kinds of appli-
cations, including archives, images, and documents. All programs
have printer functions so FuzzInMem can work on them.
Parser and key structures. We evaluate if FuzzInMem can au-
tomatically locate parsers. FuzzInMem employs Valgrind [33] for
runtime instrumentation to obtain a simplified call sequence. A file
with a randomly chosen length (30 bytes in the experiment), initial-
ized with zeros serves as an invalid seed, and two valid seeds are
used for analysis. Table 1 lists the 15 programs as well as detailed
information about their parsers and key structures. 2 programs
involve several parsers and printers. We only show the start of the
parsers in the table and denote the parser name with * at the end.
In the last column, ✓ denotes FuzzInMem can correctly find both
parsers and key structures while × denotes failure. The results show
that FuzzInMem can automatically locate parsers and key struc-
tures from 13 out of 15 programs. The exceptions are zlib and qpdf.
FuzzInMem can correctly locate the parser function zipOpen64 but
fails in finding the key structure because the parser returns a void
pointer, which does not expose information about the real return
type. In this case, we find the key structure by finding the type
of the return value in function definitions. For qpdf, FuzzInMem
locates the wrong parser function run instead of process_file and
thus the wrong key structure QPDFJob instead of QPDF. The root
cause is that the program creates a wrapper class QPDFJob and
combines the parsing and drawing functions in run(). However,
since QPDF is synthesized as a field in QPDFJob, we can still finish
the synthesis and generate mutators. In conclusion, FuzzInMem
can effectively find parsers and key structures in most programs.
If not, parsers and key structures are related to the found parsers,
and only a few human efforts are needed to look into source codes.

Table 1: Key structures and synthesized results

Program LOCs Parsers Key structure Syn LOCs # Types Found

libzip 15772 zip_open zip_t 2277 148 ✓
miniz 10112 zip_open zip_t 1313 37 ✓
zlib 30878 zipOpen64 zip64_internal 1141 31 ×
libpng 57175 png_read_info png_info_def 1745 62 ✓
giflib 6971 DGifOpenFileName GIfFileType 723 14 ✓
openjpeg 160791 pngtoimage opj_image 3470 176 ✓
libjpeg 88454 jpeg_read_header* jpeg_struct 2263 81 ✓
mozjpeg 91581 jpeg_read_header* jpeg_struct 2348 83 ✓
xfig 37525 read_fig f_compound 3662 211 ✓
imageMagick 382786 read Image 9675 750 ✓
mupdf 882899 fz_open_document fz_document 18053 396 ✓
xpdf 125529 PDFDoc PDFDoc 11064 362 ✓
qpdf 63168 process_file QPDF 3386 242 ×
poppler 202999 createPDFDoc PDFDoc 11221 537 ✓
podofo 63821 Load PdfDocument 3133 174 ✓

Table 2: Path coverage for 15 real-world applications

Program AFL AFL++ Mopt FormatFuzz FuzzInMem Weizz FuzzInMem(qemu)

libzip 249 238 244 510 405 192 380
miniz 745 665 983 809 944 347 468
zlib 349 407 401 491 503 205 329
libpng 420 475 511 N/A 565 474 592
giflib 345 266 460 535 501 296 362
openjpeg 934 N/A 938 N/A 966 N/A N/A
libjpeg 2963 2717 3847 4713 4003 91 91
mozjpeg 2375 2359 3100 2309 3339 95 95
xfig 565 463 1111 N/A 2251 1431 1542
imageMagick 1833 1865 3552 4849 4413 N/A N/A
mupdf 2973 2393 1171 N/A 4109 1644 3876
xpdf 2018 2407 2901 N/A 4898 1031 1755
qpdf 2565 4079 4194 N/A 4315 1646 3259
poppler 6894 6902 7339 N/A 8771 974 2968
podofo 2511 2731 2724 N/A 3739 742 1403

4.3 RQ3: Path coverage and seed generation
Competitors. We compare with 5 popular/state-of-the-art fuzzers
on the benchmark. AFL [3] is the most popular fuzzing tool and
serves as a baseline. AFL++ [18] is a variant of AFL that combines
different scheduling and energy strategies. Mopt [31] is another
popular fuzzer derived from AFL which works well in practice.
For structure-aware fuzzers, we compare with Weizz [17], which
automatically learns the input model from the execution trace and
deduces a high-level mutation. For grammar-based fuzzers, we com-
pare with FormatFuzzer [16], a tool that requires the user to provide
an input format by composing a set of generators in C-like code.
Using code to describe formats enables better expressiveness than
many other grammar-based fuzzers (e.g., those that take context-
free grammar specifications).
Implementation. Algorithm 1 is used to automatically find the
parsers and then we manually validate the parsers and structures.
The tool consists of more than 3000 lines of C code and 1500 lines of
Python code to synthesize codes and generate mutation functions.
Table 1 provides a breakdown of the synthesized structures and
the corresponding lines of code. The generated mutation functions
are integrated into each program after the parsing stage, forming
a collaborative mutator with AFL to conduct fuzzing. We do not
include any user-defined rules for the mutator in this evaluation.
Setup. All the fuzzers are configured with the recommended op-
tions to achieve their best performances. Since Weizz is recom-
mended to be run in Qemu mode, we also run FuzzInMem in Qemu
mode (FuzzInMem(qemu)) to make a fair comparison. All of our

8

FuzzInMem: Fuzzing Programs via In-memory Structures ICSE ’24, April 14–20, 2024, Lisbon, Portugal

0 5 10 15 20 25
0

1000

2000

3000

4000

(a) mupdf
0 5 10 15 20 25

0

1000

2000

3000

4000

5000

(b) xpdf
0 5 10 15 20 25

0

100

200

300

400

500

(c) libpng
0 5 10 15 20 25

0

100

200

300

400

500

(d) giflib

0 5 10 15 20 25
0

200

400

600

800

(e) openjpeg
0 5 10 15 20 25

0

1000

2000

3000

4000

5000

(f) imageMagick
0 5 10 15 20 25

0

500

1000

1500

2000

(g) xfig
0 5 10 15 20 25

0

2000

4000

6000

8000

(h) poppler

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

(i) podofo
0 5 10 15 20 25

0

1000

2000

3000

4000

(j) qpdf
0 5 10 15 20 25

0

1000

2000

3000

4000

(k) libjpeg
0 5 10 15 20 25

0

500

1000

1500

2000

2500

3000

(l) mozjpeg

0 5 10 15 20 25
0

100

200

300

400

500

(m) libzip
0 5 10 15 20 25

0

200

400

600

800

1000

(n) miniz
0 5 10 15 20 25

0

100

200

300

400

500

(o) zlib

AFL
AFL++
Mopt
FormatFuzzer
FuzzInMem

(p) legends

Figure 9: Path coverage. X-axis: time in hours, Y-axis: the number of unique paths.

experiments are performed on a machine with 48 cores (Intel(R)
Xeon(R) Silver 4214 CPU @ 2.20GHz) and 196GB memory running
Ubuntu 18.04 operating system. We follow the configurations rec-
ommended in a recent fuzzer evaluation work [23] and run each
experiment for 24 hours with the same initial valid seeds. All the
results are the median of 5 runs.
Path coverage. The results are presented in Table 2 and Figure 9.
N/A in the table means the application can not be fuzzed by a tool
or the path does not change due to probable under-instrumentation
problems. In the figure, we do not include the curves of Weizz and
FuzzInMem(qemu) because they are configured to be run in qemu
mode and the coverage feedback is different. From the table and
figure, we can make the following observations.

First, it is not surprising to see that AFL and AFL++ usually
find the least paths. Although adopting different seed scheduling
strategies, their curves look similar in most cases, which means the
seed scheduling strategies can not make a difference in 24 hours.
Second, Mopt works well for 11 out of 15 programs so the path
coverage outperforms AFL and AFL++. However, it still suffers
from the problem that the fuzzer is stuck in parser errors and finds
fewer paths than FuzzInMem in most cases. The reason why Mopt
outperforms AFL and AFL++ is that it calculates the probability
for each mutation method and chooses the ones more likely to

find new paths. Third, Weizz gets good path coverage for chunk-
based applications because it quickly learns the format from the
execution traces. Nonetheless, the heuristic rule does not work well
for document applications so it fails to do structure mutation. In
addition, the analysis to learn the input model is rather expensive
which makes the fuzzing inefficient and leads to poor path coverage.

While FormatFuzzer demonstrates its efficacy in fuzzing recog-
nized formats and surpasses FuzzInMem in 4 programs, its appli-
cability is limited to only 7 out of 15 programs due to its support
for a restricted set of formats. Notably, FormatFuzzer lacks support
for the PDF format, a widely recognized and utilized document
format. Although its performance is comparable to FuzzInMem in
the formats it supports, FormatFuzzer requires the user to have
extensive domain knowledge in order to provide format genera-
tors. Finally, FuzzInMem achieves the best path coverage in 10
programs out of 15. On average, FuzzInMem outperforms AFL,
AFL++, Mopt, Weizz and FormatFuzzer by 70.45%, 66.64%, 41.86%,
65.08% and 1.82%, respectively. FuzzInMem works particularly well
for several programs (e.g. mupdf, podofo, and xfig) because it suc-
cessfully generates different interesting seeds from the initial seed
sets. For example, FuzzInMem generates a new pdf file that sepa-
rates the cross-reference table into several parts by modifying an
enumeration and thus contributes to different parsing logic.

9

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xuwei Liu, Wei You, Yepeng Ye, Zhuo Zhang, Jianjun Huang, and Xiangyu Zhang

Table 3: Percentage of valid seed generated by fuzzers

Program AFL AFL++ Mopt Weizz FuzzInMem

libzip 5.22e-4 3.30e-4 4.18e-5 7.25e-4 6.80e-1
miniz 3.27e-4 9.46e-4 5.01e-4 1.48e-3 6.39e-1
zlib 3.75e-2 4.02e-2 8.33e-2 1.11e-1 7.92e-1
libpng 1.25e-6 1.44e-5 1.26e-6 6.93e-4 6.93e-1
giflib 9.83e-3 3.66e-2 4.77e-3 3.87e-4 3.81e-1
openjpeg 4.63e-1 N/A 3.11e-1 N/A 7.67e-1
libjpeg 3.49e-5 6.44e-4 1.31e-4 2.82e-5 8.52e-1
mozjpeg 5.38e-5 6.09e-4 1.41e-4 2.83e-4 8.09e-1
xfig 7.52e-2 1.17e-2 8.60e-2 8.51e-3 7.53e-1
imageMagick 6.24e-2 8.50e-2 1.96e-4 N/A 8.36e-1
mupdf 1.23e-1 1.54e-1 7.51e-2 8.17e-1 8.94e-1
xpdf 1.54e-1 2.33e-1 1.17e-1 7.34e-1 8.32e-1
qpdf 2.31e-4 5.29e-4 3.50e-4 1.43e-1 8.16e-1
poppler 2.04e-1 2.96e-1 1.07e-1 2.45e-2 7.57e-1
podofo 1.91e-2 3.30e-2 1.56e-2 8.26e-2 7.23e-1

Seed generation. We further study the seed generation capability
of FuzzInMem against other fuzzers. We measure the percentage
of generated files that remain valid throughout the mutation. We
configure FuzzInMem to perform only in-memory mutation and
disable plain bit/byte mutations. Table 3 shows the result. Data
for FormatFuzzer is omitted as it inherently knows formats and
consistently generates valid seeds for known formats. N/A means
a tool fails to fuzz the application. We employ the corresponding
fuzzed application to measure if the seed is accepted and processed
correctly. In this experiment, a seed is considered valid if the target
application returns 0.

We can learn that all fuzzers can generate valid seed inputs dur-
ing fuzzing. Different seed scheduling strategies (AFL vs. AFL++)
can affect the number of generated valid seeds. In most applications,
AFL++ outperforms AFL in seed generation. The only exceptions
are libzip and xfig. Mutation chosen strategy (AFL vs. Mopt) also
impacts valid seed generation. Mopt generates much fewer seeds in
libzip and imageMagick because it keeps applying the same muta-
tion and focuses on exploring the error-handling codes in parsers.
Thanks to the structure-aware mutations, Weizz generates hugely
more valid seeds than mutation-based fuzzers in some applications
like qpdf and xpdf. It also generates some valid seeds for libpng
while other fuzzers can hardly generate any because it learns the
chunk structures in png file format on the fly. However, it can not
pass difficult checks such as crc32 check so the percentage of valid
seeds is still low in libpng. In contrast, FuzzInMem can generate
the most percentages of valid seeds in all applications because the
printers are constraint-preserving, which automatically follows
format constraints. In most applications, FuzzInMem outperforms
its competitors by 10x-10000x times. However, even FuzzInMem
can not guarantee to generate valid seeds because the parsers and
processors in applications can reason about the semantic meanings
of file inputs. For example, if FuzzInMem changes a dictionary ob-
ject to an array object, though the printer can dump the in-memory
structure, the file can still be rejected because the processor accepts
only dictionary or integer objects in a predicate. In conclusion,
FuzzInMem can outperform other fuzzers in most programs for
both path coverage and valid seed generation.

4.4 RQ4: Bug detection
To measure the bug-finding capabilities, we keep FuzzInMem run-
ning for a week on the latest version of each tested program. FuzzIn-
Mem can successfully detect 29 unique vulnerabilities that are pre-
viously not reported. We are also awarded 5 CVEs for exploitable
bugs. All 29 bugs are confirmed by developers and 25 of them are
already fixed. The vulnerabilities cover a wide range of categories,
including stack exhaustion, use after free, heap overflow, stack over-
flow, null pointer dereference, and memory leak. FuzzInMem can
identify unique bugs due to its ability to explore more program
paths by changing in-memory structures. We show a vulnerability
found by FuzzInMem as a case study.
Case study I. This vulnerability is found in Xfig , which is an
open-source vector graphics editor. It supports different kinds of
shapes, including arcs, ellipses, polylines, splines, etc. Each shape
can have sub-types. For example, a polyline can be a box, polygon,
arc box, or imported-picture bounding box, which is denoted
as an enumeration in memory. The polygon includes at least 5
points and a box includes only 4 points. When mutating a data
structure F_line, it changes the subtype of a polyline from a box to
a polygon. The printer adaptively converts the shape to a polygon
with four points. The generated file can be still accepted by the
parser. However, when Xfig tries to process it and converts it to
a GBX file format (Gerber format), a null pointer dereference is
triggered. The root cause is that Xfig assumes a polygon has at least
5 points and accesses the fifth point without any validation checks.
Other fuzzers are not likely to find the bug because they can not
easily change a shape from box to polygon by bit/byte mutations.

Case study II. Figure 10 presents a vulnerability in Xpdf , which
exists for more than 10 years and affects many commercial appli-
cations such as Apple Preview, Foxit PDF Reader, and Adobe PDF
Reader. The function 𝑓 𝑖𝑛𝑑𝐷𝑒𝑠𝑡𝐼𝑛𝑇𝑟𝑒𝑒() tries to search for a name
in the tree dictionary and retrieve the corresponding destination
object, which is further used for page jumping. The function first
looks for “Names” array in the tree dictionary (Line 5) and compares
the “name” argument to elements in “Names” array (Lines 6-8). If it
finds a match, it returns the corresponding destination object (Line
9). Otherwise, the function tries to find “name” in the “Kids” array
of the tree (Lines 10-12). It iterates the “Limits” array in each kid
and figures out the range of names in the kid. If “name” lies in the
limit range, it searches the “name” in the kid tree by the recursive
call (Lines 13-18). If nothing is found, the function returns a null
object indicating no object found (Line 19). However, Line 18 is
vulnerable and exposes a stack exhaustion bug.

The input file in our motivation example (figure 1) triggers the
bug by infinite recursion. The vulnerable function tries to find the
name “wl0” in the tree. But the tree does not contain “Names”, hence
it should find the name “wl0” in “Kids”. It accesses kids and finds
“wl0” is in the limit range (from “wl0” to “wl0”), so the function
makes a recursive call to find “wl0”. However, the kid of the object
is itself, forming a self-loop that leads to infinite recursion and
finally crashes the program. The bug can be uniquely found by the
cooperation of FuzzInMem and AFL. Figure 11 shows parts of the
mutation history. Originally, the input shown in Figure 11(a) con-
tains an object whose “Limits” is an empty array. When mutating
the in-memory structure, FuzzInMem adds two “wl0” to the empty

10

FuzzInMem: Fuzzing Programs via In-memory Structures ICSE ’24, April 14–20, 2024, Lisbon, Portugal

01 Object findDestInTree(
02 Object *tree,
03 GString *name,
04 Object *obj){
05 if(tree->dictLookup("Names", &names)->isArray())
06 for(i = 0; i < names.arrayGeyLength(); i+= 2)
07 if(names.arrayGet(i, &name1)->isString()
08 && name->cmp(name1.getString() == 0))
09 return obj = names.arrayGet(i+1, obj);
10 if (tree->dictLookup("Kids", &kids)->isArray())
11 for (i = 0; i < kids.arrayGetLength();i++)
12 if(kids.arrayGet(i, &kid)->isDict())
13 if(kid.dictLookup("Limits", &limits)->isArray())
14 if(limits.arrayGet(0, &low)->isString()
15 && name->cmp(low.getString() >= 0
16 && limits.arrayGet(1, &high)->isString()
17 && name->cmp(high.getString() <= 0)
18 findDestInTree(&kid, name, obj);
19 return obj->initNull();
20 }

Figure 10: A vulnerability in Xpdf.

2 0 obj <</Kids [4 0 R] /Limits []>> endobj

2 0 obj <</Kids [4 0 R] /Limits [(wl0) (wl0)]>> endobj

2 0 obj <</Kids [2 0 R] /Limits [(wl0) (wl0)]>> endobj

Mutated by FuzzInMem

Mutated by AFL

(a)

(b)

(c)

Figure 11: Cooperation of FuzzInMem and AFL to expose bug.

array and modifies the corresponding array length, generating the
mutants shown in Figure 11(b). Since the mutants lead to new path
coverage, it is further mutated by AFL, which changes “4 0 R” to
“2 0 R” by bit/byte mutations, generating the mutant shown in
Figure 11(c). Eventually, all the pre-conditions are satisfied and the
bug is triggered.

5 LIMITATIONS
FuzzInMem cannot fuzz programs that do not have any initial valid
inputs. FuzzInMem relies on parser functions to transform inputs
into in-memory structures. In the absence of initial valid inputs, the
parser fails, preventing our analysis (e.g., identifying in-memory
structures). Besides, FuzzInMem needs printer functions thereby
restricting its applicability to programs without such functions.
Fortunately, we observe that many popular We only need one good
printer for each format, as the printer may be chained up with other
consumer applications of the same format to form an end-to-end
fuzzing pipeline.

6 RELATEDWORK
Fuzzing. Fuzzing is a promising technique for vulnerability discov-
ery. It can be categorized into generation-based [1, 6] and mutation-
based [3, 5]. There exist a large number of studies aim to improve the
effectiveness of fuzzing by learning the input format offline [20, 49]
or on-the-fly [9, 30, 40, 53, 54], and dynamically adapt genera-
tion/mutation strategies based on the fuzzing history [11, 18, 26–
29, 31, 37, 41, 57].

Closely related works are those that mutate objects other than
input files. Parametric fuzzing, as introduced in previous works
such as [34–36], represents a pioneering technique for conducting
indirect mutations. For example, Zest [35] leverages a generator
function that takes a sequence of bits as a parameter to generate

valid output files. It mutates the parameter so that a small change
of the parameter is projected to significant changes in output files.
The difference is that parametric fuzzing requires a well-crafted
generator function but FuzzInMem reuses built-in printers. We
consider that FuzzInMem and parametric fuzzing are complemen-
tary. Specifically, in scenarios involving complicated formats like
PDF, where crafting an effective generator may be impractical for
non-experts, FuzzInMem offers a more accessible alternative. In
addition, parametric fuzzing could be easily used to generate a
certain part of an input, e.g., an image embedded inside a PDF
file. Some tree-based grammar fuzzers/generators [38, 50] use pro-
vided grammars to parse test cases into Abstract Syntax Trees and
then mutate them at the subtree level. Although FuzzInMem also
performs tree-based mutation, our trees do not reflect syntactic
structures but rather memory object references. To mitigate the
dependency on predefined grammars, researchers have suggested
enhancing fuzzers/generators by employing machine learning tech-
niques to learn formats from inputs [20, 43]. Learn & Fuzz [20]
applies a sequence-to-sequence technique to learn the grammar
of objects from an extensive PDF file corpus. As a result, it can
generate correct objects. Subsequently, with a manually crafted
printer function, these objects are arranged and printed to form a
syntactically correct PDF file. FuzzInMem, on the other hand, does
not need a large corpus or a manually crafted printer to fuzz PDF
files. Another line of work is to fuzz generators. Fuzztruction [8]
and MutaGen [22] mutate existing format generators to emit semi-
valid seeds. FuzzInMem differs from these techniques by mutating
the in-memory structures instead of the generators themselves.

Application Logic Reuse. At the core of FuzzInMem is applica-
tion logic reuse, which makes certain program analysis tasks easier
to achieve. BCR [12] extracts malware encryption and decryption
functions and reuses them in other programs. Inspector Gadget [24]
automatically identifies the instructions that are responsible for
specific malware behavior for further reuse and analysis. Virtu-
soso [15], VMST [19] and Hybrid-Bridge [44] identify logic (from
in-guest applications or the whole system) that could be reused for
virtual machine introspection. DSCRETE [46] and RetroScope [45]
leverages the existing code for memory content rendering of a
single data structure or full display screens. FuzzInMem transfers
the philosophy of application logic reuse to program testing. In
particular, FuzzInMem leverages the built-in printer functions to
fix the constraints broken by mutations.

7 CONCLUSION
We observed that well-designed applications have built-in print
functions that preserve constraints and can be used to generate valid
input files. Based on this observation, we developed FuzzInMem,
a novel technique that leverages the logic of these print functions.
FuzzInMem includes a key structure analyzer, a mutation synthe-
sizer, and a printer. It identifies key structures and the appropriate
location for instrumentation through differential analysis of call se-
quences. The source code is then modified to include a mutator and
perform tree-based mutations in memory. Finally, the print function
is utilized to verify the integrity and generate the structures as files.
Our evaluation demonstrates the effectiveness of FuzzInMem in
terms of path coverage, seed generation, and bug detection.

11

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xuwei Liu, Wei You, Yepeng Ye, Zhuo Zhang, Jianjun Huang, and Xiangyu Zhang

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their construc-
tive comments. The Purdue authors were supported, in part by
DARPA VSPELLS - HR001120S0058, NSF1901242 and 1910300, ONR
N000141712045, N000141410468 and N000141712947. The RUC au-
thors were supported, in part by the National Natural Science Foun-
dation of China (NSFC) under grant 62002361, and the Fundamental
Research Funds for the Central Universities and the Research Funds
of Renmin University of China under grant 22XNKJ29. Any opin-
ions, findings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of the sponsors

REFERENCES
[1] 2010. SPIKE Fuzzer. http://resources.infosecinstitute.com/intro-to-fuzzing.
[2] 2020. GramFuzz. https://github.com/d0c-s4vage/gramfuzz.
[3] 2021. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/afl.
[4] 2021. Google Fuzzer Test Suite. https://github.com/google/fuzzer-test-suite.
[5] 2021. libfuzzer. https://llvm.org/docs/LibFuzzer.html.
[6] 2023. Peach Fuzzer. https://www.peach.tech/products/peach-fuzzer.
[7] 2023. Poppler. https://poppler.freedesktop.org.
[8] Nils Bars, Moritz Schloegel, Tobias Scharnowski, Nico Schiller, and Thorsten Holz.

2023. Fuzztruction: Using Fault Injection-based Fuzzing to Leverage Implicit
Domain Knowledge. In 32st USENIX Security Symposium (USENIX Security 23).
USENIX Association.

[9] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-
milo, SimonWörner, and ThorstenHolz. 2019. GRIMOIRE: Synthesizing Structure
while Fuzzing. In 28th USENIX Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019. 1985–2002.

[10] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017.

[11] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security CCS 2016.

[12] Juan Caballero, Noah M. Johnson, Stephen McCamant, and Dawn Song. 2010.
Binary Code Extraction and Interface Identification for Security Applications.
In Proceedings of the Network and Distributed System Security Symposium, NDSS
2010, San Diego, California, USA, 28th February - 3rd March 2010. The Internet
Society. https://www.ndss-symposium.org/ndss2010/binary-code-extraction-
and-interface-identification-security-applications

[13] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy (SP 2018).

[14] Yaohui Chen, Mansour Ahmadi, Reza Mirzazade Farkhani, Boyu Wang, and Long
Lu. 2020. MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing. In International
Symposium on Recent Advances in Intrusion Detection.

[15] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon T. Giffin, and
Wenke Lee. 2011. Virtuoso: Narrowing the Semantic Gap in Virtual Machine
Introspection. In 32nd IEEE Symposium on Security and Privacy, S&P 2011,
22-25 May 2011, Berkeley, California, USA. IEEE Computer Society, 297–312.
https://doi.org/10.1109/SP.2011.11

[16] Rafael Dutra, Rahul Gopinath, and Andreas Zeller. 2021. FormatFuzzer: Effective
Fuzzing of Binary File Formats. CoRR abs/2109.11277 (2021). arXiv:2109.11277
https://arxiv.org/abs/2109.11277

[17] Andrea Fioraldi, Daniele ConoD’Elia, and Emilio Coppa. 2020. WEIZZ: Automatic
Grey-Box Fuzzing for Structured Binary Formats. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Virtual Event,
USA) (ISSTA 2020). Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/3395363.3397372

[18] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies (WOOT’20). USENIX Association,
USA, Article 10, 1 pages.

[19] Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May
2012, San Francisco, California, USA. IEEE Computer Society, 586–600. https:
//doi.org/10.1109/SP.2012.40

[20] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
learning for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 50–59. https://doi.org/10.1109/ASE.2017.
8115618

[21] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery,
New York, NY, USA, 230–243. https://doi.org/10.1145/3460319.3464795

[22] Ulf Kargén and Nahid Shahmehri. 2015. Turning Programs against Each Other:
High Coverage Fuzz-Testing Using Binary-Code Mutation and Dynamic Slicing.
In Proceedings of the 2015 10th JointMeeting on Foundations of Software Engineering
(Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New
York, NY, USA, 782–792. https://doi.org/10.1145/2786805.2786844

[23] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang
(Eds.). ACM, 2123–2138. https://doi.org/10.1145/3243734.3243804

[24] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and Engin Kirda. 2010.
Inspector Gadget: Automated Extraction of Proprietary Gadgets from Malware
Binaries. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA. IEEE Computer Society, 29–44. https:
//doi.org/10.1109/SP.2010.10

[25] Gwangmu Lee, Woo-Jae Shim, and Byoungyoung Lee. 2021. Constraint-guided
Directed Greybox Fuzzing. In USENIX Security Symposium.

[26] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 254–265. https://doi.org/10.1145/3213846.3213874

[27] Caroline Lemieux and Koushik Sen. 2017. FairFuzz: Targeting Rare Branches to
Rapidly Increase Greybox Fuzz Testing Coverage. CoRR abs/1709.07101 (2017).

[28] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (Mont-
pellier, France) (ASE ’18). Association for Computing Machinery, New York, NY,
USA, 475–485. https://doi.org/10.1145/3238147.3238176

[29] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 627–637. https://doi.org/10.1145/3106237.3106295

[30] Xuwei Liu, Wei You, Zhuo Zhang, and Xiangyu Zhang. 2022. TensileFuzz: Fa-
cilitating Seed Input Generation in Fuzzing via String Constraint Solving. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Computing Ma-
chinery, New York, NY, USA, 391–403. https://doi.org/10.1145/3533767.3534403

[31] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,
1949–1966. https://www.usenix.org/conference/usenixsecurity19/presentation/
lyu

[32] Chenyang Lyu, Hong Liang, Shouling Ji, Xuhong Zhang, Binbin Zhao, Meng Han,
Yun Li, Zhe Wang, Wenhai Wang, and Raheem Beyah. 2022. SLIME: Program-
Sensitive Energy Allocation for Fuzzing. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for ComputingMachinery, New York, NY, USA, 365–377.
https://doi.org/10.1145/3533767.3534385

[33] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Diego,
California, USA) (PLDI ’07). Association for Computing Machinery, New York,
NY, USA, 89–100. https://doi.org/10.1145/1250734.1250746

[34] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-Guided
Property-Based Testing in Java. In Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 398–401.
https://doi.org/10.1145/3293882.3339002

[35] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (Beijing, China)
(ISSTA 2019). Association for ComputingMachinery, New York, NY, USA, 329–340.
https://doi.org/10.1145/3293882.3330576

[36] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Validity Fuzzing and Parametric Generators for Effective Random
Testing. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). 266–267. https://doi.org/10.1109/
ICSE-Companion.2019.00107

[37] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints.

12

http://resources.infosecinstitute.com/intro-to-fuzzing
https://github.com/d0c-s4vage/gramfuzz
http://lcamtuf.coredump.cx/afl
https://github.com/google/fuzzer-test-suite
https://llvm.org/docs/LibFuzzer.html
https://www.peach.tech/products/peach-fuzzer
https://poppler.freedesktop.org
https://www.ndss-symposium.org/ndss2010/binary-code-extraction-and-interface-identification-security-applications
https://www.ndss-symposium.org/ndss2010/binary-code-extraction-and-interface-identification-security-applications
https://doi.org/10.1109/SP.2011.11
https://arxiv.org/abs/2109.11277
https://arxiv.org/abs/2109.11277
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1109/SP.2012.40
https://doi.org/10.1109/SP.2012.40
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/2786805.2786844
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SP.2010.10
https://doi.org/10.1109/SP.2010.10
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3533767.3534403
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1145/3533767.3534385
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1109/ICSE-Companion.2019.00107
https://doi.org/10.1109/ICSE-Companion.2019.00107

FuzzInMem: Fuzzing Programs via In-memory Structures ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Proc. ACM Program. Lang. 3, OOPSLA, Article 174 (oct 2019), 29 pages. https:
//doi.org/10.1145/3360600

[38] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In 2020 IEEE Symposium on
Security and Privacy (SP). 1629–1642. https://doi.org/10.1109/SP40000.2020.00067

[39] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury.
2019. Smart Greybox Fuzzing. IEEE Transactions on Software Engineering (2019).
https://doi.org/10.1109/TSE.2019.2941681

[40] Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal:
Neural byte sieve for fuzzing. CoRR abs/1711.04596 (2017).

[41] Sanjay Rawat, Vivek Jain, Ashish KumVuzzerar, Lucian Cojocar, Cristiano Giuf-
frida, and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.
In 24th Annual Network and Distributed System Security Symposium, NDSS 2017.

[42] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the 23rd USENIX Conference on Security Symposium
(San Diego, CA) (SEC’14). USENIX Association, USA, 861–875.

[43] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020. Quickly
Generating Diverse Valid Test Inputs with Reinforcement Learning. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,
USA, 1410–1421. https://doi.org/10.1145/3377811.3380399

[44] Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. 2014. Hybrid-Bridge: Efficiently
Bridging the Semantic-Gap in VMI via Decoupled Execution and Training Mem-
oization. In 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet So-
ciety. https://www.ndss-symposium.org/ndss2014/hybrid-bridge-efficiently-
bridging-semantic-gap-virtual-machine-introspection-decoupled

[45] Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and Golden
G. Richard III. 2016. Screen after Previous Screens: Spatial-Temporal Recreation of
Android App Displays fromMemory Images. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016, Thorsten Holz and
Stefan Savage (Eds.). USENIX Association, 1137–1151. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/saltaformaggio

[46] Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu. 2014.
DSCRETE: Automatic Rendering of Forensic Information from Memory Im-
ages via Application Logic Reuse. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014, Kevin Fu and Jaeyeon
Jung (Eds.). USENIX Association, 255–269. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/saltaformaggio

[47] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In 2016 IEEE Symposium on Security and Privacy (SP). 138–157.
https://doi.org/10.1109/SP.2016.17

[48] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In Pro-
ceedings of the 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016.

[49] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy
(SP). 579–594. https://doi.org/10.1109/SP.2017.23

[50] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In Proceedings of the 41st International Conference on
Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 724–735.
https://doi.org/10.1109/ICSE.2019.00081

[51] Jinghan Wang, Chengyu Song, and Heng Yin. 2021. Reinforcement Learning-
based Hierarchical Seed Scheduling for Greybox Fuzzing. Proceedings 2021 Net-
work and Distributed System Security Symposium (2021).

[52] Wikipedia. 2021. PDF. https://en.wikipedia.org/wiki/PDF.
[53] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu Zhang, and Bin Liang.

2019. SLF: Fuzzing without Valid Seed Inputs. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 712–723. https://doi.org/10.1109/
ICSE.2019.00080

[54] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery. In 2019 IEEE Symposium on Security and
Privacy (SP). 769–786. https://doi.org/10.1109/SP.2019.00057

[55] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
2020. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the
Adversarial Multi-Armed Bandit. In Proceedings of the 29th USENIX Conference on
Security Symposium (SEC’20). USENIX Association, USA, Article 130, 18 pages.

[56] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX
Security Symposium, USENIX Security 2018. 745–761.

[57] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei Liu, and Xiangyu
Zhang. 2021. StochFuzz: Sound and Cost-effective Fuzzing of Stripped Binaries

by Incremental and Stochastic Rewriting. In 2021 IEEE Symposium on Security
and Privacy (SP). 659–676. https://doi.org/10.1109/SP40001.2021.00109

13

https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1145/3377811.3380399
https://www.ndss-symposium.org/ndss2014/hybrid-bridge-efficiently-bridging-semantic-gap-virtual-machine-introspection-decoupled
https://www.ndss-symposium.org/ndss2014/hybrid-bridge-efficiently-bridging-semantic-gap-virtual-machine-introspection-decoupled
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/saltaformaggio
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/saltaformaggio
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/saltaformaggio
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/saltaformaggio
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://en.wikipedia.org/wiki/PDF
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/SP.2019.00057
https://doi.org/10.1109/SP40001.2021.00109

	Abstract
	1 Introduction
	2 Motivation
	2.1 PDF and PDF Reader
	2.2 Limitation of existing techniques
	2.3 Our technique

	3 Design
	3.1 Locate key structures
	3.2 Mutator Synthesis
	3.3 Reuse printer function

	4 Evaluation
	4.1 RQ1: Popularity of printer functions
	4.2 RQ2: Key structures and synthesizer results
	4.3 RQ3: Path coverage and seed generation
	4.4 RQ4: Bug detection

	5 Limitations
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

